Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(2-Hydroxyethyl)anilinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate

Graham Smith^a* and Urs D. Wermuth^b

^aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and ^bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia Correspondence e-mail: g.smith@qut.edu.au

Received 16 November 2009; accepted 20 November 2009

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.087; data-to-parameter ratio = 12.5.

In the structure of the title compound, $C_8H_{12}NO^+$. C₇H₅O₆S⁻·H₂O, isolated from the reaction of 2-(4-aminophenyl)ethanol with 5-sulfosalicylic acid, the cations form head-to-tail hydrogen-bonded chains through $C_1^1(9)$ anilinium $N^+{-}H{\cdots}{O}_{hydroxyl}$ interactions while the anions also form parallel but $C_1^1(8)$ -linked chains through carboxylic acid O-H...Osulfonate interactions. These chains inter-associate through a number of N^+ -H···O and O-H···O bridging interactions, giving a two-dimensional array in the *ab* plane.

Related literature

For the structure of the 2-(4-aminophenyl)ethanol salt of 3,5dinitrobenzoic acid, see: Smith & Wermuth (2009). For structures of 5-sulfosalicylic acid salts of aniline and substituted anilines, see: Bakasova et al. (1991); Smith (2005); Smith et al. (2005a,b, 2006). For hydrogen-bonding graph-set notation, see: Etter et al. (1990).

Experimental

Crystal data $C_8H_{12}NO^+ \cdot C_7H_5O_6S^- \cdot H_2O$ $M_r = 373.37$ Triclinic, P1 a = 7.7412 (6) Å b = 8.7977 (6) Å

c = 12.8330 (8) Å $\alpha = 102.169 \ (6)^{\circ}$ $\beta = 98.538 \ (6)^{\circ}$ 101 266

$$\gamma = 101.300 (0)$$

 $V = 820.97 (11) \text{ Å}$

Z = 2Mo $K\alpha$ radiation $\mu = 0.24 \text{ mm}^{-1}$

Data collection

Oxford Diffraction Gemini-S CCDdetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.934, T_{\max} = 0.980$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.087$ S = 0.993215 reflections 258 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O12$	0.80(3)	1.93(3) 1.07(3)	2.6302 (18)	145 (2)
O11 - H11 - O35 $O11A - H11A - O51^{ii}$	0.84(3) 0.81(2)	1.97 (3)	2.7444 (17)	172 (2) 169 (2)
$N4A - H41A \cdots O1W$ $N4A - H42A \cdots O11A^{iii}$	0.94(2) 0.89(2)	1.86 (2) 1.87 (2)	2.784 (2) 2.7287 (19)	166.5 (19) 161 (2)
$N4A - H43A \cdots O53$ $O1W - H11W \cdots O12^{iii}$	0.94 (2) 0.87 (3)	1.94 (2) 2.10 (3)	2.8689 (19) 2.9396 (19)	175.6 (18) 164 (2)
$O1W - H12W \cdots O52^{iv}$	0.85 (2)	1.92 (2)	2.759 (2)	171 (2)

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z; (iii) x, y - 1, z; (iv) x + 1, y, z.

Data collection: CrysAlis Pro (Oxford Diffraction (2009); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

The authors acknowledge financial support from the Australian Research Council and the School of Physical and Chemical Sciences, Queensland University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2580).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Bakasova, Z. B., Abdybaliev, D. A., Sharipov, Kh. T., Akbaev, A. A., Ibragimov, R. T., Talipov, S. A. & Ismankulov, A. I. (1991). Uzbek. Khim. Zh. pp. 22-25.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G. (2005). Acta Cryst. E61, 03398-03400.
- Smith, G. & Wermuth, U. D. (2009). Acta Cryst. E65, o2109.
- Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o2313-o2315.
- Smith, G., Wermuth, U. D. & White, J. M. (2005a). Acta Cryst. C61, o105-o109. Smith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. E61, 0313-0316.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

 $0.40 \times 0.40 \times 0.20 \text{ mm}$

10214 measured reflections

3215 independent reflections

2756 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

T = 200 K

 $R_{\rm int}=0.022$

refinement $\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$

Acta Cryst. (2009). E65, o3209 [doi:10.1107/S1600536809049745]

4-(2-Hydroxyethyl)anilinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate

G. Smith and U. D. Wermuth

Comment

We recently described the hydrogen bonding in the 1:1 proton-transfer salt of 3,5-dinitrobenzoic acid with 2-(4aminophenyl)ethanol (Smith & Wermuth, 2009), which was the first reported structure of any compound of this aromatic Lewis base. Because of the common use of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid, 5-SSA) in the formation of stable crystalline compounds of Lewis bases, in particular the analogous aniline (Bakasova *et al.*, 1991), 3-substituted anilines 3-methoxyaniline (Smith *et al.*, 2006), 3-carboxyaniline (Smith, 2005), and the 4-X-substituted anilines: X =F, Cl, Br (Smith *et al.*, 2005*a*) and $X = CO_2H$ (Smith *et al.*, 2005*b*). We therefore carried out the 1:1 stoichiometric reaction of 5-SSA with this aniline-substituted alcohol in 50% ethanol-water. The result was a 1:1 salt 4-(2-hydroxyethyl)anilinium 3carboxy-4-hydroxybenzenesulfonate monohydrate, C₈H₁₂NO⁺ C₇H₅O₆S⁻. H₂O, (I), the structure of which is reported here.

With (I) (Fig. 1), proton transfer occurs and the resulting anilinium group forms head-to-tail hydrogen-bonded cation chains through anilinium N⁺-H···O_{hydroxyl} interactions [graph set C9 (Etter *et al.*, 1990)]. The anions also form similar head-to-tail hydrogen-bonded chains through carboxylic acid O–H···O_{sulfonate} interactions (graph set C8) and lie parallel to the cation chains, extending along the *b* direction. These chains associate through N⁺-H···O_{sulfonate}, ···O_{carboxyl}, ···O_{hydroxyl} and ···O_{water} interactions as well as through hydroxyl O–H···O_{sulfonate}, water O–H···O_{sulfonate} and O–H···O_{carboxyl} bridging interactions (Table 1). The result is a 2-D array (Fig. 2) in which there are also very weak cation–anion aromatic ring π - π interactions [ring centroid separation, 3.8552 (10) Å].

In the 5-SSA anion, the carboxylic acid group is essentially co-planar with the benzene ring [torsion angle C6–C1–C11–O12, -178.40 (15)°] because of the presence of the common intramolecular phenol O–H…O_{carboxyl} hydrogen bond [2.6302 (18) Å].

Experimental

Compound (I) was synthesized by heating together 1 mmol quantities of 2-(4-aminophenyl)ethanol with 3-carboxy-4-hydroxybenzenesulfonic acid in 50 ml of 50% ethanol–water under reflux for 10 minutes. After concentration to *ca*. 30 ml, partial room temperature evaporation of the hot-filtered solution gave pale-brown plates (m. p. 498 K).

Refinement

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined (see Table 1 for distances). The H-atoms were included in the refinement in calculated positions [C–H(aliphatic) = 0.97 Å and C–H(aromatic) = 0.93 Å) using a riding model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Molecular configuration and atom naming scheme for the substituted anilinium cation, the 5-SSA anion and the water molecule of solvation in (I). Inter-species hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The 2-D hydrogen-bonded array in (I) formed through interlinked hydrogen-bonded cation and anion chains extending in the *ab* plane. Hydrogen-bonding associations are shown as dashed lines. Non-interacting H atoms are omitted for clarity. For symmetry codes, see Table 1.

4-(2-Hydroxyethyl)anilinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate

Crystal data

$C_8H_{12}NO^+ C_7H_5O_6S^-H_2O$	Z = 2
$M_r = 373.37$	F(000) = 392
Triclinic, <i>P</i> T	$D_{\rm x} = 1.510 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Melting point: 498 K
a = 7.7412 (6) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 8.7977 (6) Å	Cell parameters from 4875 reflections
c = 12.8330 (8) Å	$\theta = 3.2 - 28.8^{\circ}$
$\alpha = 102.169 \ (6)^{\circ}$	$\mu = 0.24 \text{ mm}^{-1}$
$\beta = 98.538 \ (6)^{\circ}$	T = 200 K
$\gamma = 101.366 \ (6)^{\circ}$	Plate, pale brown
$V = 820.97 (11) \text{ Å}^3$	$0.40\times0.40\times0.20\ mm$

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer	3215 independent reflections
Radiation source: Enhance (Mo) X-ray source	2756 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.022$
ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.934, T_{\max} = 0.980$	$k = -10 \rightarrow 10$
10214 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.087$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 0.99	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0575P)^{2} + 0.1198P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3215 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
258 parameters	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O11A	0.80608 (18)	0.87360 (14)	0.00089 (10)	0.0341 (4)
N4A	0.78541 (19)	0.07130 (16)	0.19112 (12)	0.0234 (4)
C1A	0.8163 (2)	0.53103 (17)	0.13072 (12)	0.0212 (4)
C2A	0.9359 (2)	0.51052 (18)	0.21625 (12)	0.0244 (4)
C3A	0.9278 (2)	0.35998 (18)	0.23691 (13)	0.0241 (5)
C4A	0.7995 (2)	0.23068 (17)	0.17042 (12)	0.0206 (4)
C5A	0.6827 (2)	0.24656 (19)	0.08278 (14)	0.0299 (5)
C6A	0.6921 (2)	0.39667 (19)	0.06356 (14)	0.0304 (5)
C11A	0.8410 (2)	0.72115 (19)	0.00469 (14)	0.0302 (5)
C21A	0.8142 (2)	0.69635 (18)	0.11528 (13)	0.0247 (4)
S5	0.31926 (5)	0.00829 (4)	0.26512 (3)	0.0203 (1)
O2	0.83804 (16)	0.60833 (15)	0.51275 (10)	0.0334 (4)
011	0.43638 (16)	0.62380 (14)	0.25827 (10)	0.0310 (4)
O12	0.67893 (15)	0.76007 (13)	0.38590 (10)	0.0323 (4)
O51	0.17800 (14)	0.04515 (12)	0.19312 (9)	0.0253 (3)
O52	0.25277 (15)	-0.07135 (13)	0.34506 (9)	0.0289 (4)
O53	0.43041 (14)	-0.08330 (13)	0.20599 (9)	0.0292 (3)
C1	0.5791 (2)	0.47935 (17)	0.36674 (12)	0.0205 (4)
C2	0.7134 (2)	0.47689 (18)	0.45347 (12)	0.0226 (4)
C3	0.7206 (2)	0.33328 (19)	0.48234 (13)	0.0257 (5)
C4	0.5988 (2)	0.19310 (18)	0.42610 (12)	0.0227 (5)
C5	0.46674 (19)	0.19342 (17)	0.33820 (12)	0.0192 (4)
C6	0.45641 (19)	0.33538 (17)	0.30967 (12)	0.0201 (4)
C11	0.5704 (2)	0.63262 (18)	0.33854 (13)	0.0233 (5)

O1W	0.9577 (2)	0.04283 (16)	0.39011 (11)	0.0352 (4)
H2A	1.02240	0.59840	0.26020	0.0290*
H3A	1.00740	0.34710	0.29440	0.0290*
H5A	0.59910	0.15770	0.03750	0.0360*
H6A	0.61400	0.40810	0.00480	0.0370*
H11A	0.824 (3)	0.894 (3)	-0.0554 (19)	0.047 (6)*
H12A	0.75870	0.63730	-0.05290	0.0360*
H13A	0.96310	0.71970	-0.00400	0.0360*
H21A	0.90780	0.77360	0.17060	0.0300*
H22A	0.70000	0.71900	0.12720	0.0300*
H41A	0.858 (3)	0.075 (2)	0.2578 (17)	0.040 (5)*
H42A	0.818 (3)	0.009 (3)	0.1367 (19)	0.049 (6)*
H43A	0.668 (3)	0.026 (2)	0.1963 (15)	0.035 (5)*
H2	0.823 (3)	0.685 (3)	0.491 (2)	0.062 (8)*
Н3	0.80840	0.33250	0.54000	0.0310*
H4	0.60390	0.09830	0.44620	0.0270*
H6	0.36750	0.33520	0.25230	0.0240*
H11	0.434 (3)	0.715 (3)	0.2491 (17)	0.047 (6)*
H11W	0.883 (4)	-0.035 (3)	0.403 (2)	0.069 (8)*
H12W	1.047 (3)	0.002 (3)	0.3819 (17)	0.046 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
011A	0.0568 (8)	0.0265 (6)	0.0266 (7)	0.0153 (6)	0.0133 (6)	0.0147 (5)
N4A	0.0250 (7)	0.0188 (7)	0.0293 (8)	0.0067 (6)	0.0076 (6)	0.0093 (6)
C1A	0.0239 (8)	0.0180 (7)	0.0226 (8)	0.0051 (6)	0.0050 (6)	0.0066 (6)
C2A	0.0268 (8)	0.0188 (7)	0.0228 (8)	-0.0002 (6)	0.0006 (6)	0.0028 (6)
C3A	0.0250 (8)	0.0252 (8)	0.0217 (8)	0.0058 (6)	0.0000 (6)	0.0085 (6)
C4A	0.0227 (8)	0.0164 (7)	0.0257 (8)	0.0067 (6)	0.0079 (6)	0.0076 (6)
C5A	0.0284 (9)	0.0190 (8)	0.0356 (9)	0.0014 (7)	-0.0066 (7)	0.0054 (7)
C6A	0.0290 (9)	0.0230 (8)	0.0341 (9)	0.0041 (7)	-0.0094 (7)	0.0087 (7)
C11A	0.0428 (10)	0.0227 (8)	0.0291 (9)	0.0100 (7)	0.0133 (8)	0.0088 (7)
C21A	0.0302 (8)	0.0182 (7)	0.0250 (8)	0.0045 (6)	0.0040 (7)	0.0062 (6)
S5	0.0188 (2)	0.0172 (2)	0.0251 (2)	0.0033 (1)	0.0016 (2)	0.0087 (2)
02	0.0322 (7)	0.0256 (6)	0.0333 (7)	-0.0010 (5)	-0.0059 (5)	0.0035 (5)
011	0.0337 (7)	0.0180 (6)	0.0393 (7)	0.0060 (5)	-0.0028 (5)	0.0102 (5)
012	0.0320 (6)	0.0204 (6)	0.0399 (7)	0.0000 (5)	0.0026 (5)	0.0062 (5)
O51	0.0224 (6)	0.0253 (6)	0.0276 (6)	0.0033 (5)	-0.0010 (5)	0.0114 (5)
052	0.0258 (6)	0.0283 (6)	0.0352 (7)	0.0027 (5)	0.0032 (5)	0.0191 (5)
O53	0.0270 (6)	0.0211 (5)	0.0377 (7)	0.0061 (5)	0.0065 (5)	0.0032 (5)
C1	0.0206 (7)	0.0209 (7)	0.0212 (7)	0.0058 (6)	0.0071 (6)	0.0049 (6)
C2	0.0216 (7)	0.0229 (8)	0.0211 (8)	0.0031 (6)	0.0050 (6)	0.0023 (6)
C3	0.0232 (8)	0.0311 (8)	0.0225 (8)	0.0070 (7)	0.0000 (6)	0.0085 (7)
C4	0.0248 (8)	0.0234 (8)	0.0236 (8)	0.0085 (6)	0.0053 (6)	0.0106 (6)
C5	0.0179 (7)	0.0193 (7)	0.0211 (7)	0.0044 (6)	0.0053 (6)	0.0055 (6)
C6	0.0196 (7)	0.0205 (7)	0.0211 (7)	0.0064 (6)	0.0027 (6)	0.0066 (6)
C11	0.0236 (8)	0.0199 (8)	0.0271 (8)	0.0056 (6)	0.0075 (7)	0.0054 (6)

O1W	0.0372 (8)	0.0354 (7)	0.0397 (7)	0.0111 (6)	0.0129 (6)	0.0178 (6)
Goometrie nav	amatars (Å °)					
Geometric pure	umeters (A,)					
S5—O51		1.4563 (12)	C4A	—С5А	1.	384 (2)
S5—O52		1.4581 (12)	C5A	—С6А	1.	384 (2)
S5—O53		1.4747 (12)	C11.	A—C21A	1.	518 (2)
S5—C5		1.7723 (16)	C2A	—H2A	0.	9300
011A—C11A		1.429 (2)	C3A	—НЗА	0.	9300
O11A—H11A		0.81 (2)	C5A	—Н5А	0.	9300
O2—C2		1.348 (2)	C6A	—Н6А	0.	9300
O11—C11		1.327 (2)	C11.	A—H12A	0.	9700
O12—C11		1.234 (2)	C11.	A—H13A	0.	9700
O2—H2		0.80(3)	C21.	A—H21A	0.	9700
O11—H11		0.84 (3)	C21.	A—H22A	0.	9700
O1W—H11W		0.87 (3)	C1-	-C2	1.	413 (2)
O1W—H12W		0.85 (2)	C1-	-C11	1.	479 (2)
N4A—C4A		1.468 (2)	C1-	-C6	1.	404 (2)
N4A—H41A		0.94 (2)	C2-	-C3	1.	398 (2)
N4A—H42A		0.89 (2)	C3-	C4	1.	377 (2)
N4A—H43A		0.94 (2)	C4	-C5	1.	406 (2)
C1A—C6A		1.393 (2)	С5—	-C6	1.	387 (2)
C1A—C2A		1.394 (2)	С3—	-Н3	0.	9300
C1A—C21A		1.512 (2)	C4-	-H4	0.	9300
C2A—C3A		1.396 (2)	C6–	-H6	0.	9300
C3A—C4A		1.379 (2)				
051—85—053		113.02 (7)	C5A	—С6А—Н6А	11	9.00
O51—S5—C5		106.82 (7)	C1A	—С6А—Н6А	11	9.00
052—85—053		110.32 (7)	C21.	А—С11А—Н12А	11	0.00
O52—S5—C5		107.10(7)	C21.	А—С11А—Н13А	11	0.00
O53—S5—C5		105.72 (7)	H12	А—С11А—Н13А	10)9.00
051—85—052		113.33 (7)	011	А—С11А—Н12А	11	0.00
C11A—O11A—	-H11A	109.8 (18)	011	А—С11А—Н13А	11	0.00
С2—О2—Н2		109.8 (18)	C1A	—С21А—Н22А	10	08.00
С11—О11—Н1	1	110.7 (16)	C1A	—С21А—Н21А	10	08.00
H11W—O1W—	-H12W	102 (3)	H21	А—С21А—Н22А	10	07.00
H41A—N4A—	H43A	105.5 (18)	C11.	А—С21А—Н21А	10	08.00
H41A—N4A—	H42A	110 (2)	C11.	А—С21А—Н22А	10	08.00
C4A—N4A—H	41A	112.1 (11)	C2-	-C1-C11	11	9.52 (14)
C4A—N4A—H	43A	111.1 (12)	C6-	-C1-C11	12	21.67 (14)
H42A—N4A—	H43A	110 (2)	C2-	-C1C6	11	8.82 (14)
C4A—N4A—H	42A	108.5(17)	02-	-C2-C3	11	6.62 (14)
C_{2A} $-C_{1A}$ $-C_{2A}$	6A	118 47 (14)	C1-	-C2-C3	13	20.02(14)
C2A - C1A - C	21A	120 69 (14)	02-	-C2C1	12	23.35 (14)
C6A - C1A - C	21A	120.09(11) 120.74(14)	C2-	-C3-C4	12	20.56 (15)
C1A - C2A - C	3A	120.99(14)	C3-	-C4C5	11	9 94 (15)
$C_{2A} - C_{3A} - C_{4A}$	4A	118 74 (14)	C4-	-C5-C6	11	20 10 (14)
N4A—C4A—C	5A	118 38 (14)	S5_	-C5-C4	11	8 07 (12)
C3A—C4A—C	5A	121.53 (15)	S5-	-C5-C6	12	21.82 (12)
		(10)			1.	- 、 ワ

N4A—C4A—C3A	120.08 (14)	C1—C6—C5	120.53 (14)
C4A—C5A—C6A	119.01 (15)	O11—C11—O12	121.98 (15)
C1A—C6A—C5A	121.20 (15)	O11—C11—C1	115.13 (14)
O11A-C11A-C21A	106.35 (13)	O12—C11—C1	122.89 (14)
C1A—C21A—C11A	115.37 (13)	С4—С3—Н3	120.00
C1A—C2A—H2A	120.00	С2—С3—Н3	120.00
СЗА—С2А—Н2А	119.00	C3—C4—H4	120.00
С4А—С3А—НЗА	121.00	С5—С4—Н4	120.00
С2А—С3А—Н3А	121.00	С1—С6—Н6	120.00
C4A—C5A—H5A	121.00	С5—С6—Н6	120.00
С6А—С5А—Н5А	120.00		
O52—S5—C5—C4	48.08 (14)	O11A-C11A-C21A-C1A	170.97 (13)
O52—S5—C5—C6	-133.01 (13)	C6—C1—C2—O2	179.56 (14)
O53—S5—C5—C4	-69.56 (13)	C6—C1—C2—C3	-1.1 (2)
O53—S5—C5—C6	109.35 (13)	C11—C1—C2—O2	-0.7 (2)
O51—S5—C5—C6	-11.28 (15)	C11—C1—C2—C3	178.66 (14)
O51—S5—C5—C4	169.81 (12)	C2—C1—C6—C5	0.2 (2)
C6A—C1A—C21A—C11A	-59.7 (2)	C11—C1—C6—C5	-179.57 (14)
C2A—C1A—C21A—C11A	123.94 (16)	C2-C1-C11-O11	-177.96 (14)
C6A—C1A—C2A—C3A	-2.3 (2)	C2-C1-C11-O12	1.9 (2)
C21A—C1A—C2A—C3A	174.16 (15)	C6-C1-C11-O11	1.8 (2)
C2A—C1A—C6A—C5A	2.1 (2)	C6-C1-C11-O12	-178.40 (15)
C21A—C1A—C6A—C5A	-174.34 (15)	O2—C2—C3—C4	-179.87 (14)
C1A—C2A—C3A—C4A	0.5 (2)	C1—C2—C3—C4	0.7 (2)
C2A—C3A—C4A—C5A	1.6 (2)	C2—C3—C4—C5	0.6 (2)
C2A—C3A—C4A—N4A	-178.94 (14)	C3—C4—C5—S5	177.44 (12)
N4A—C4A—C5A—C6A	178.74 (15)	C3—C4—C5—C6	-1.5 (2)
C3A—C4A—C5A—C6A	-1.8 (2)	S5—C5—C6—C1	-177.77 (12)
C4A—C5A—C6A—C1A	-0.1 (2)	C4—C5—C6—C1	1.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2…O12	0.80 (3)	1.93 (3)	2.6302 (18)	145 (2)
O11—H11···O53 ⁱ	0.84 (3)	1.97 (3)	2.8034 (17)	172 (2)
O11A—H11A····O51 ⁱⁱ	0.81 (2)	1.95 (2)	2.7444 (17)	169 (2)
N4A—H41A····O1W	0.94 (2)	1.86 (2)	2.784 (2)	166.5 (19)
N4A—H42A…O11A ⁱⁱⁱ	0.89 (2)	1.87 (2)	2.7287 (19)	161 (2)
N4A—H43A…O53	0.94 (2)	1.94 (2)	2.8689 (19)	175.6 (18)
O1W—H11W···O12 ⁱⁱⁱ	0.87 (3)	2.10 (3)	2.9396 (19)	164 (2)
O1W—H12W····O52 ^{iv}	0.85 (2)	1.92 (2)	2.759 (2)	171 (2)
C3A— $H3A$ ···O2 ^v	0.93	2.50	3.373 (2)	157
С6—Н6…О51	0.93	2.57	2.9437 (19)	104
Symmetry codes: (i) $r + 1 = r$ (ii) $-r+1$	-v+1 $-z$ (iii) r $v-1$ z (iv)	r+1 v 7: (v) $-r+2$	$-\nu+1$ $-\tau+1$	

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+1, -*y*+1, -*z*; (iii) *x*, *y*-1, *z*; (iv) *x*+1, *y*, *z*; (v) -*x*+2, -*y*+1, -*z*+1.

Fig. 1

Fig. 2

